Non-negative Matrix Factorization with Sparseness Constraints
نویسنده
چکیده
Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. Although it has successfully been applied in several applications, it does not always result in parts-based representations. In this paper, we show how explicitly incorporating the notion of ‘sparseness’ improves the found decompositions. Additionally, we provide complete MATLAB code both for standard NMF and for our extension. Our hope is that this will further the application of these methods to solving novel data-analysis problems.
منابع مشابه
Speech recognition based on Itakura-Saito divergence and dynamics/sparseness constraints from mixed sound of speech and music by non-negative matrix factorization
We considered a speech recognition method for mixed sound, which is composed of both speech and music, that only removes music based on non-negative matrix factorization (NMF). We used Itakura-Saito divergence instead of Kullback-Leibler divergence to compare the cost function, and the dynamics and sparseness constraints of a weight matrix to improve speech recognition. For isolated word recogn...
متن کاملSparse Non-negative Matrix Factorization with Generalized Kullback-Leibler Divergence
Non-negative Matrix Factorization (NMF), especially with sparseness constraints, plays a critically important role in data engineering and machine learning. Hoyer (2004) presented an algorithm to compute NMF with exact sparseness constraints. The exact sparseness constraints depends on a projection operator. In the present work, we first give a very simple counterexample, for which the projecti...
متن کاملNon-negative matrix factorization for visual coding
This paper combines linear sparse coding and nonnegative matrix factorization into sparse non-negative matrix factorization. In contrast to non-negative matrix factorization, the new model can leam much sparser representation via imposing sparseness constraints explicitly; in contrast to a close model non-negative sparse coding, the new model can learn parts-based representation via fully multi...
متن کاملجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملSpeech Denoising Using Non-negative Matrix Factorization with Kullback-Leibler Divergence and Sparseness Constraints
A speech denoising method based on Non-Negative Matrix Factorization (NMF) is presented in this paper. With respect to previous related works, this paper makes two contributions. First, our method does not assume a priori knowledge about the nature of the noise. Second, it combines the use of the Kullback-Leibler divergence with sparseness constraints on the activation matrix, improving the per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 5 شماره
صفحات -
تاریخ انتشار 2004